码蚁

打码改变人生

OCServ 安装使用

Posted at — Sep 16, 2018

Openconnect 服务器(OCServ)是SSL VPN服务器,适合需要精细的用户管理和控制的管理员。

OCServ 安装

官网地址 https://ocserv.gitlab.io/www/index.html
项目地址 https://gitlab.com/openconnect/ocserv

EPEL 有编译好的 RPM 包,所以我们直接安装即可

$ dnf install -y ocserv

服务端程序启动之前我们需要对 Linux 服务器进行相关设置

Linux 内核开启转发

$ vi /etc/sysctl.conf
# Controls IP packet forwarding
net.ipv4.ip_forward = 1

$ sysctl -p

服务端防火墙设置

$ cat /etc/firewalld/direct.xml 
<?xml version="1.0" encoding="utf-8"?>
<direct>
  <!-- 防火墙允许转发 -->
  <rule priority="0" table="filter" ipv="ipv4" chain="FORWARD">-j ACCEPT</rule>
  <!-- 防火墙设置转发过程tcp mss 根据网卡自适应 -->
  <passthrough ipv="ipv4">-I FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu</passthrough>
  <!-- SNAT -->
  <passthrough ipv="ipv4">-t nat -A POSTROUTING -o eth0 -s 192.168.136.0/24 -j SNAT --to-source 192.168.139.4</passthrough>
</direct>

$ firewall-cmd --zone=public --add-port=443/tcp --permanent
$ firewall-cmd --zone=public --add-port=443/udp --permanent

添加 VPN 用户

$ ocpasswd -c /etc/ocserv/ocpasswd admin

输入两遍此用户密码即可。

修改 OCServ 配置文件

### The following directives do not change with server reload.
#
# User authentication method. To require multiple methods to be
# used for the user to login, add multiple auth directives. The values
# in the 'auth' directive are AND composed (if multiple all must
# succeed).
# Available options: certificate, plain, pam, radius, gssapi.
# Note that authentication methods utilizing passwords cannot be
# combined (e.g., the plain, pam or radius methods).
#
# certificate:
#  This indicates that all connecting users must present a certificate.
#  The username and user group will be then extracted from it (see
#  cert-user-oid and cert-group-oid). The certificate to be accepted
#  it must be signed by the CA certificate as specified in 'ca-cert' and
#  it must not be listed in the CRL, as specified by the 'crl' option.
#
# pam[gid-min=1000]:
#  This enabled PAM authentication of the user. The gid-min option is used 
# by auto-select-group option, in order to select the minimum valid group ID.
#
# plain[passwd=/etc/ocserv/ocpasswd,otp=/etc/ocserv/users.otp]
#  The plain option requires specifying a password file which contains
# entries of the following format.
# "username:groupname1,groupname2:encoded-password"
# One entry must be listed per line, and 'ocpasswd' should be used
# to generate password entries. The 'otp' suboption allows to specify
# an oath password file to be used for one time passwords; the format of
# the file is described in https://code.google.com/p/mod-authn-otp/wiki/UsersFile
#
# radius[config=/etc/radiusclient/radiusclient.conf,groupconfig=true,nas-identifier=name,override-interim-updates=false]:
#  The radius option requires specifying freeradius-client configuration
# file. If the groupconfig option is set, then config-per-user will be overriden,
# and all configuration will be read from radius. The 'override-interim-updates' if set to
# true will ignore Acct-Interim-Interval from the server and 'stats-report-time' will be considered.
#
# gssapi[keytab=/etc/key.tab,require-local-user-map=true,tgt-freshness-time=900]
#  The gssapi option allows to use authentication methods supported by GSSAPI,
# such as Kerberos tickets with ocserv. It should be best used as an alternative
# to PAM (i.e., have pam in auth and gssapi in enable-auth), to allow users with
# tickets and without tickets to login. The default value for require-local-user-map
# is true. The 'tgt-freshness-time' if set, it would require the TGT tickets presented
# to have been issued within the provided number of seconds. That option is used to
# restrict logins even if the KDC provides long time TGT tickets.

#auth = "pam"
#auth = "pam[gid-min=1000]"
#auth = "plain[passwd=./sample.passwd,otp=./sample.otp]"
#auth = "certificate"
#auth = "radius[config=/etc/radiusclient/radiusclient.conf,groupconfig=true]"
auth = "plain[passwd=/etc/ocserv/ocpasswd]"

# Specify alternative authentication methods that are sufficient
# for authentication. That is, if set, any of the methods enabled
# will be sufficient to login, irrespective of the main 'auth' entries.
# When multiple options are present, they are OR composed (any of them
# succeeding allows login).
#enable-auth = "certificate"
#enable-auth = "gssapi"
#enable-auth = "gssapi[keytab=/etc/key.tab,require-local-user-map=true,tgt-freshness-time=900]"

# Accounting methods available:
# radius: can be combined with any authentication method, it provides
#      radius accounting to available users (see also stats-report-time).
#
# pam: can be combined with any authentication method, it provides
#      a validation of the connecting user's name using PAM. It is
#      superfluous to use this method when authentication is already
#      PAM.
#
# Only one accounting method can be specified.
#acct = "radius[config=/etc/radiusclient/radiusclient.conf]"

# Use listen-host to limit to specific IPs or to the IPs of a provided 
# hostname.
#listen-host = [IP|HOSTNAME]

# When the server has a dynamic DNS address (that may change),
# should set that to true to ask the client to resolve again on
# reconnects.
#listen-host-is-dyndns = true

# TCP and UDP port number
# UDP port 需要设置为 443,不然 Anyconnect DTLS 通道建立失败,还在寻求解决方案,X-DTLS-Port: 443 anyconnect 不生效
tcp-port = 443
udp-port = 443

# Accept connections using a socket file. It accepts HTTP
# connections (i.e., without SSL/TLS unlike its TCP counterpart),
# and uses it as the primary channel. That option cannot be
# combined with certificate authentication.
#listen-clear-file = /var/run/ocserv-conn.socket

# The user the worker processes will be run as. It should be
# unique (no other services run as this user).
run-as-user = ocserv
run-as-group = ocserv

# socket file used for IPC with occtl. You only need to set that,
# if you use more than a single servers.
#occtl-socket-file = /var/run/occtl.socket

# socket file used for server IPC (worker-main), will be appended with .PID
# It must be accessible within the chroot environment (if any), so it is best
# specified relatively to the chroot directory.
socket-file = ocserv.sock

# The default server directory. Does not require any devices present.
chroot-dir = /var/lib/ocserv


### All configuration options below this line are reloaded on a SIGHUP.
### The options above, will remain unchanged. Note however, that the 
### server-cert, server-key, dh-params and ca-cert options will be reloaded
### if the provided file changes, on server reload. That allows certificate
### rotation, but requires the server key to remain the same for seamless
### operation. If the server key changes on reload, there may be connection
### failures during the reloading time.


# Whether to enable seccomp/Linux namespaces worker isolation. That restricts the number of 
# system calls allowed to a worker process, in order to reduce damage from a
# bug in the worker process. It is available on Linux systems at a performance cost.
# The performance cost is roughly 2% overhead at transfer time (tested on a Linux 3.17.8).
# Note however, that process isolation is restricted to the specific libc versions
# the isolation was tested at. If you get random failures on worker processes, try
# disabling that option and report the failures you, along with system and debugging
# information at: https://gitlab.com/ocserv/ocserv/issues
isolate-workers = true

# A banner to be displayed on clients
#banner = "Welcome"

# Limit the number of clients. Unset or set to zero for unlimited.
max-clients = 1024
#max-clients = 16

# Limit the number of identical clients (i.e., users connecting 
# multiple times). Unset or set to zero for unlimited.
max-same-clients = 2

# Limit the number of client connections to one every X milliseconds 
# (X is the provided value). Set to zero for no limit.
#rate-limit-ms = 100

# Stats report time. The number of seconds after which each
# worker process will report its usage statistics (number of
# bytes transferred etc). This is useful when accounting like
# radius is in use.
#stats-report-time = 360

# Keepalive in seconds
keepalive = 32400

# Dead peer detection in seconds.
# Note that when the client is behind a NAT this value
# needs to be short enough to prevent the NAT disassociating
# his UDP session from the port number. Otherwise the client
# could have his UDP connection stalled, for several minutes.
dpd = 90

# Dead peer detection for mobile clients. That needs to
# be higher to prevent such clients being awaken too 
# often by the DPD messages, and save battery.
# The mobile clients are distinguished from the header
# 'X-AnyConnect-Identifier-DeviceType'.
mobile-dpd = 1800

# If using DTLS, and no UDP traffic is received for this
# many seconds, attempt to send future traffic over the TCP
# connection instead, in an attempt to wake up the client
# in the case that there is a NAT and the UDP translation
# was deleted. If this is unset, do not attempt to use this
# recovery mechanism.
switch-to-tcp-timeout = 25

# MTU discovery (DPD must be enabled)
# 自适应 MTU
try-mtu-discovery = true

# The key and the certificates of the server
# The key may be a file, or any URL supported by GnuTLS (e.g., 
# tpmkey:uuid=xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx;storage=user
# or pkcs11:object=my-vpn-key;object-type=private)
#
# The server-cert file may contain a single certificate, or
# a sorted certificate chain.
#
# There may be multiple server-cert and server-key directives,
# but each key should correspond to the preceding certificate.
# The certificate files will be reloaded when changed allowing for in-place
# certificate renewal (they are checked and reloaded periodically;
# a SIGHUP signal to main server will force reload).

# SSL 证书
server-cert = /etc/pki/ocserv/public/server.crt
server-key = /etc/pki/ocserv/private/server.key

# Diffie-Hellman parameters. Only needed if you require support
# for the DHE ciphersuites (by default this server supports ECDHE).
# Can be generated using:
# certtool --generate-dh-params --outfile /path/to/dh.pem
#dh-params = /path/to/dh.pem

# If you have a certificate from a CA that provides an OCSP
# service you may provide a fresh OCSP status response within
# the TLS handshake. That will prevent the client from connecting
# independently on the OCSP server.
# You can update this response periodically using:
# ocsptool --ask --load-cert=your_cert --load-issuer=your_ca --outfile response
# Make sure that you replace the following file in an atomic way.
#ocsp-response = /path/to/ocsp.der

# In case PKCS #11, TPM or encrypted keys are used the PINs should be available
# in files. The srk-pin-file is applicable to TPM keys only, and is the 
# storage root key.
#pin-file = /path/to/pin.txt
#srk-pin-file = /path/to/srkpin.txt

# The password or PIN needed to unlock the key in server-key file.
# Only needed if the file is encrypted or a PKCS #11 object. This
# is an alternative method to pin-file.
#key-pin = 1234

# The SRK PIN for TPM.
# This is an alternative method to srk-pin-file.
#srk-pin = 1234

# The Certificate Authority that will be used to verify
# client certificates (public keys) if certificate authentication
# is set.
ca-cert = /etc/pki/ocserv/cacerts/ca.crt

# The object identifier that will be used to read the user ID in the client 
# certificate. The object identifier should be part of the certificate's DN
# Useful OIDs are: 
#  CN = 2.5.4.3, UID = 0.9.2342.19200300.100.1.1
cert-user-oid = 0.9.2342.19200300.100.1.1

# The object identifier that will be used to read the user group in the 
# client  certificate. The object identifier should be part of the certificate's
# DN. Useful OIDs are: 
#  OU (organizational unit) = 2.5.4.11 
#cert-group-oid = 2.5.4.11

# The revocation list of the certificates issued by the 'ca-cert' above.
# See the manual to generate an empty CRL initially. The CRL will be reloaded
# periodically when ocserv detects a change in the file. To force a reload use
# SIGHUP.
#crl = /path/to/crl.pem

# Uncomment this to enable compression negotiation (LZS, LZ4).
#compression = true

# Set the minimum size under which a packet will not be compressed.
# That is to allow low-latency for VoIP packets. The default size
# is 256 bytes. Modify it if the clients typically use compression
# as well of VoIP with codecs that exceed the default value.
#no-compress-limit = 256

# GnuTLS priority string; note that SSL 3.0 is disabled by default
# as there are no openconnect (and possibly anyconnect clients) using
# that protocol. The string below does not enforce perfect forward
# secrecy, in order to be compatible with legacy clients.
#
# Note that the most performant ciphersuites are the moment are the ones
# involving AES-GCM. These are very fast in x86 and x86-64 hardware, and
# in addition require no padding, thus taking full advantage of the MTU.
# For that to be taken advantage of, the openconnect client must be
# used, and the server must be compiled against GnuTLS 3.2.7 or later.
# Use "gnutls-cli --benchmark-tls-ciphers", to see the performance
# difference with AES_128_CBC_SHA1 (the default for anyconnect clients)
# in your system.

#tls-priorities = "NORMAL:%SERVER_PRECEDENCE:%COMPAT:-VERS-SSL3.0"
tls-priorities = "@SYSTEM"

# More combinations in priority strings are available, check
# http://gnutls.org/manual/html_node/Priority-Strings.html
# E.g., the string below enforces perfect forward secrecy (PFS) 
# on the main channel.
#tls-priorities = "NORMAL:%SERVER_PRECEDENCE:%COMPAT:-RSA:-VERS-SSL3.0:-ARCFOUR-128"

# That option requires the established DTLS channel to use the same
# cipher as the primary TLS channel. This cannot be combined with
# listen-clear-file since the ciphersuite information is not available
# in that configuration. Note also, that this option implies that
# dtls-legacy option is false; this option cannot be enforced
# in the legacy/compat protocol.
#match-tls-dtls-ciphers = true

# The time (in seconds) that a client is allowed to stay connected prior
# to authentication
auth-timeout = 240

# The time (in seconds) that a client is allowed to stay idle (no traffic)
# before being disconnected. Unset to disable.
#idle-timeout = 1200

# The time (in seconds) that a client is allowed to stay connected
# Unset to disable.
#session-timeout = 86400

# The time (in seconds) that a mobile client is allowed to stay idle (no
# traffic) before being disconnected. Unset to disable.
#mobile-idle-timeout = 2400

# The time (in seconds) that a client is not allowed to reconnect after 
# a failed authentication attempt.
min-reauth-time = 300

# Banning clients in ocserv works with a point system. IP addresses
# that get a score over that configured number are banned for
# min-reauth-time seconds. By default a wrong password attempt is 10 points,
# a KKDCP POST is 1 point, and a connection is 1 point. Note that
# due to difference processes being involved the count of points
# will not be real-time precise.
#
# Score banning cannot be reliably used when receiving proxied connections
# locally from an HTTP server (i.e., when listen-clear-file is used).
#
# Set to zero to disable.
max-ban-score = 50

# The time (in seconds) that all score kept for a client is reset.
ban-reset-time = 300

# In case you'd like to change the default points.
#ban-points-wrong-password = 10
#ban-points-connection = 1
#ban-points-kkdcp = 1

# Cookie timeout (in seconds)
# Once a client is authenticated he's provided a cookie with
# which he can reconnect. That cookie will be invalided if not
# used within this timeout value. On a user disconnection, that
# cookie will also be active for this time amount prior to be
# invalid. That should allow a reasonable amount of time for roaming
# between different networks.
# 修改 cookie 有效时间
cookie-timeout = 3000000

# If this is enabled (not recommended) the cookies will stay
# valid even after a user manually disconnects, and until they
# expire. This may improve roaming with some broken clients.
# 持久化 cookies,不然客户端调整 mtu 时断开重连会失败
persistent-cookies = true

# Whether roaming is allowed, i.e., if true a cookie is
# restricted to a single IP address and cannot be re-used
# from a different IP.
deny-roaming = false

# ReKey time (in seconds)
# ocserv will ask the client to refresh keys periodically once
# this amount of seconds is elapsed. Set to zero to disable (note
# that, some clients fail if rekey is disabled).
rekey-time = 172800

# ReKey method
# Valid options: ssl, new-tunnel
#  ssl: Will perform an efficient rehandshake on the channel allowing
#       a seamless connection during rekey.
#  new-tunnel: Will instruct the client to discard and re-establish the channel.
#       Use this option only if the connecting clients have issues with the ssl
#       option.
rekey-method = ssl

# Script to call when a client connects and obtains an IP.
# The following parameters are passed on the environment.
# REASON, USERNAME, GROUPNAME, HOSTNAME (the hostname selected by client), 
# DEVICE, IP_REAL (the real IP of the client), IP_REAL_LOCAL (the local
# interface IP the client connected), IP_LOCAL (the local IP
# in the P-t-P connection), IP_REMOTE (the VPN IP of the client),
# IPV6_LOCAL (the IPv6 local address if there are both IPv4 and IPv6
# assigned), IPV6_REMOTE (the IPv6 remote address), IPV6_PREFIX, and
# ID (a unique numeric ID); REASON may be "connect" or "disconnect".
# In addition the following variables OCSERV_ROUTES (the applied routes for this
# client), OCSERV_NO_ROUTES, OCSERV_DNS (the DNS servers for this client),
# will contain a space separated list of routes or DNS servers. A version
# of these variables with the 4 or 6 suffix will contain only the IPv4 or
# IPv6 values.

# The disconnect script will receive the additional values: STATS_BYTES_IN,
# STATS_BYTES_OUT, STATS_DURATION that contain a 64-bit counter of the bytes 
# output from the tun device, and the duration of the session in seconds.

#connect-script = /usr/bin/ocserv-script
#disconnect-script = /usr/bin/ocserv-script

# UTMP
# Register the connected clients to utmp. This will allow viewing
# the connected clients using the command 'who'.
#use-utmp = true

# Whether to enable support for the occtl tool (i.e., either through D-BUS,
# or via a unix socket).
use-occtl = true

# PID file. It can be overriden in the command line.
pid-file = /var/run/ocserv.pid

# Set the protocol-defined priority (SO_PRIORITY) for packets to
# be sent. That is a number from 0 to 6 with 0 being the lowest
# priority. Alternatively this can be used to set the IP Type-
# Of-Service, by setting it to a hexadecimal number (e.g., 0x20).
# This can be set per user/group or globally.
#net-priority = 3

# Set the VPN worker process into a specific cgroup. This is Linux
# specific and can be set per user/group or globally.
#cgroup = "cpuset,cpu:test"

#
# Network settings
#

# The name to use for the tun device
device = vpns

# Whether the generated IPs will be predictable, i.e., IP stays the
# same for the same user when possible.
predictable-ips = true

# The default domain to be advertised
default-domain = example.com

# The pool of addresses that leases will be given from. If the leases
# are given via Radius, or via the explicit-ip? per-user config option then 
# these network values should contain a network with at least a single
# address that will remain under the full control of ocserv (that is
# to be able to assign the local part of the tun device address).
ipv4-network = 192.168.135.0
ipv4-netmask = 255.255.255.0

# An alternative way of specifying the network:
#ipv4-network = 192.168.1.0/24

# The IPv6 subnet that leases will be given from.
#ipv6-network = fda9:4efe:7e3b:03ea::/64

# Specify the size of the network to provide to clients. It is
# generally recommended to provide clients with a /64 network in
# IPv6, but any subnet may be specified. To provide clients only
# with a single IP use the prefix 128.
#ipv6-subnet-prefix = 128
#ipv6-subnet-prefix = 64

# Whether to tunnel all DNS queries via the VPN. This is the default
# when a default route is set.
#tunnel-all-dns = true

# The advertized DNS server. Use multiple lines for
# multiple servers.
# dns = fc00::4be0
dns = 100.100.2.136

# The NBNS server (if any)
#nbns = 192.168.1.3

# The domains over which the provided DNS should be used. Use
# multiple lines for multiple domains.
#split-dns = example.com
# 用于解决 macos 本地迁移网络重连 dns 使用旧 dns 问题
split-dns = xxexamplexx.com

# Prior to leasing any IP from the pool ping it to verify that
# it is not in use by another (unrelated to this server) host.
# Only set to true, if there can be occupied addresses in the
# IP range for leases.
ping-leases = false

# Use this option to enforce an MTU value to the incoming
# connections. Unset to use the default MTU of the TUN device.
#mtu = 1420

# Unset to enable bandwidth restrictions (in bytes/sec). The
# setting here is global, but can also be set per user or per group.
#rx-data-per-sec = 40000
#tx-data-per-sec = 40000

# The number of packets (of MTU size) that are available in
# the output buffer. The default is low to improve latency.
# Setting it higher will improve throughput.
#output-buffer = 10

# Routes to be forwarded to the client. If you need the
# client to forward routes to the server, you may use the 
# config-per-user/group or even connect and disconnect scripts.
#
# To set the server as the default gateway for the client just
# comment out all routes from the server, or use the special keyword
# 'default'.

#route = 10.10.10.0/255.255.255.0
#route = 192.168.0.0/255.255.0.0
#route = fef4:db8:1000:1001::/64

# Subsets of the routes above that will not be routed by
# the server.

#no-route = 192.168.5.0/255.255.255.0

# If set, the script /usr/bin/ocserv-fw will be called to restrict
# the user to its allowed routes and prevent him from accessing
# any other routes. In case of defaultroute, the no-routes are restricted.
# All the routes applied by ocserv can be reverted using /usr/bin/ocserv-fw
# --removeall. This option can be set globally or in the per-user configuration.
#restrict-user-to-routes = true

# When set to true, all client's iroutes are made visible to all
# connecting clients except for the ones offering them. This option
# only makes sense if config-per-user is set.
#expose-iroutes = true

# Groups that a client is allowed to select from.
# A client may belong in multiple groups, and in certain use-cases
# it is needed to switch between them. For these cases the client can
# select prior to authentication. Add multiple entries for multiple groups.
# The group may be followed by a user-friendly name in brackets.
#select-group = group1
#select-group = group2[My special group]

# The name of the (virtual) group that if selected it would assign the user
# to its default group.
#default-select-group = DEFAULT

# Instead of specifying manually all the allowed groups, you may instruct
# ocserv to scan all available groups and include the full list.
#auto-select-group = true

# Configuration files that will be applied per user connection or
# per group. Each file name on these directories must match the username
# or the groupname.
# The options allowed in the configuration files are dns, nbns,
#  ipv?-network, ipv4-netmask, rx/tx-per-sec, iroute, route, no-route,
#  explicit-ipv4, explicit-ipv6, net-priority, deny-roaming, no-udp, 
#  user-profile, cgroup, stats-report-time, and session-timeout.
#
# Note that the 'iroute' option allows to add routes on the server
# based on a user or group. The syntax depends on the input accepted
# by the commands route-add-cmd and route-del-cmd (see below). The no-udp
# is a boolean option (e.g., no-udp = true), and will prevent a UDP session
# for that specific user or group.

config-per-user = /etc/ocserv/config-per-user/
config-per-group = /etc/ocserv/config-per-group/

# When config-per-xxx is specified and there is no group or user that
# matches, then utilize the following configuration.
#default-user-config = /etc/ocserv/defaults/user.conf
#default-group-config = /etc/ocserv/defaults/group.conf

# The system command to use to setup a route. %{R} will be replaced with the
# route/mask and %{D} with the (tun) device.
#
# The following example is from linux systems. %R should be something
# like 192.168.2.0/24 (the argument of iroute).

#route-add-cmd = "ip route add %{R} dev %{D}"
#route-del-cmd = "ip route delete %{R} dev %{D}"

# This option allows to forward a proxy. The special keywords '%{U}'
# and '%{G}', if present will be replaced by the username and group name.
#proxy-url = http://example.com/
#proxy-url = http://example.com/%{U}/

# This option allows you to specify a URL location where a client can
# post using MS-KKDCP, and the message will be forwarded to the provided
# KDC server. That is a translation URL between HTTP and Kerberos.
# In MIT kerberos you'll need to add in realms:
#   EXAMPLE.COM = {
#     kdc = https://ocserv.example.com/kerberos
#     http_anchors = FILE:/etc/ocserv-ca.pem
#   }
# This option is available if ocserv is compiled with GSSAPI support. 

#kkdcp = SERVER-PATH KERBEROS-REALM [email protected]:PORT
#kkdcp = /kerberos EXAMPLE.COM [email protected]:88
#kkdcp = /kerberos-tcp EXAMPLE.COM [email protected]:88

#
# The following options are for (experimental) AnyConnect client 
# compatibility. 

# This option will enable the pre-draft-DTLS version of DTLS, and
# will not require clients to present their certificate on every TLS
# connection. It must be set to true to support legacy CISCO clients
# and openconnect clients < 7.08. When set to true, it implies dtls-legacy = true.
cisco-client-compat = true

# This option allows to disable the DTLS-PSK negotiation (enabled by default).
# The DTLS-PSK negotiation was introduced in ocserv 0.11.5 to deprecate
# the pre-draft-DTLS negotiation inherited from AnyConnect. It allows the
# DTLS channel to negotiate its ciphers and the DTLS protocol version.
#dtls-psk = false

# This option allows to disable the legacy DTLS negotiation (enabled by default,
# but that may change in the future).
# The legacy DTLS uses a pre-draft version of the DTLS protocol and was
# from AnyConnect protocol. It has several limitations, that are addressed
# by the dtls-psk protocol supported by openconnect 7.08+.
dtls-legacy = true

# Client profile xml. A sample file exists in doc/profile.xml.
# It is required by some of the CISCO clients.
# This file must be accessible from inside the worker's chroot. 
user-profile = profile.xml

#Advanced options

# Option to allow sending arbitrary custom headers to the client after
# authentication and prior to VPN tunnel establishment. You shouldn't
# need to use this option normally; if you do and you think that
# this may help others, please send your settings and reason to
# the openconnect mailing list. The special keywords '%{U}'
# and '%{G}', if present will be replaced by the username and group name.
#custom-header = "X-My-Header: hi there"

# ipv6协议栈不进行控制
custom-header = "X-CSTP-Client-Bypass-Protocol: true"

启动 OCServ

# 启动
$ systemctl start ocserv

# 设置开机自启动
$ systemctl enable ocserv

Openconnect 客户端安装

同样 EPEL 有编译好的 RPM 包,我们直接安装即可

$ dnf install -y openconnect

创建启动服务

$ cat /etc/systemd/system/openconnect.service 
[Unit]
Description=Connect to my VPN
After=network.target

[Service]
Type=simple
Environment=password=qKAskGay25AOo2
ExecStart=/bin/sh -c 'echo $password | openconnect -u admin --passwd-on-stdin ocserv.example.com'
ExecStop=/usr/bin/pkill -SIGINT openconnect
RestartSec=30
Restart=always
StartLimitIntervalSec=0

[Install]
WantedBy=multi-user.target

服务端根据不用用户设置路由

OCServ 配置文件添加
connect-script = /etc/ocserv/connect-script-set-route.sh

shell 脚本内容:

$ cat  /etc/ocserv/connect-script-set-route.sh 
#!/bin/sh

case "$USERNAME" in
  admin)
/usr/sbin/ip route del 172.19.0.0/16
/usr/sbin/ip route add 172.19.0.0/16 via $IP_REMOTE
        ;;

  hangzhou)
/usr/sbin/ip route del 192.168.200.0/24
/usr/sbin/ip route del 192.168.121.0/24
/usr/sbin/ip route add 192.168.200.0/24 via $IP_REMOTE
/usr/sbin/ip route add 192.168.121.0/24 via $DEVICE
        ;;
esac
exit 0

OCServ 常用命令

简单的用户操作:

添加用户
ocpasswd -c /etc/ocserv/ocpasswd 【用户名】

添加用户至某个分组
ocpasswd -c /etc/ocserv/ocpasswd -g 【分组名称】 【用户名】

锁定用户
ocpasswd -c /etc/ocserv/ocpasswd -l 【用户名】

解锁用户
ocpasswd -c /etc/ocserv/ocpasswd -u 【用户名】

删除用户
ocpasswd -c /etc/ocserv/ocpasswd -d 【用户名】

查看当前状态

查看当前服务运行状态:
occtl -n show status

查看当前在线用户详情:
occtl -n show users

踢掉当前在线用户

通过用户名:
occtl disconnect user 【用户名】

通过id:
occtl disconnect id 【id号】

路由表配置

分组配置

# 创建分组文件夹
$ mkdir -p /etc/ocserv/config-per-group

# 创建分组配置(分组名和分组文件名要相同), 以下为创建 Default 为例:
# 创建 Default 分组文件,将路由表等的配置填入此文件,并保存
$ touch /etc/ocserv/config-per-group/Default

# 创建 Default 分组中的用户名为 USER 的用户,并按提示输入两遍密码(添加用户的步骤)
$ ocpasswd -c /etc/ocserv/ocpasswd -g Default USER

# OCServ 配置文件增加配置选项
config-per-group = /etc/ocserv/config-per-group/

用户配置

# 创建用户文件夹
$ mkdir -p /etc/ocserv/config-per-user/

# 创建用户文件,将路由表等的配置填入此文件
$ touch /etc/ocserv/config-per-user/admin

# OCServ 配置文件增加配置选项
config-per-group = /etc/ocserv/config-per-user/
comments powered by Disqus